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Abstract

This paper studies the identification of ARMA systems with colored measurement noises using finite-level quantized observa-
tions. Compared with the case under colorless noises, this problem is more challenging. Our approach is to jointly design an
adaptive quantizer and a recursive estimator to identify system parameters. Specifically, the quantizer uses the latest estimate
to adjust its thresholds, and the estimator is updated by using quantized observations. To accommodate the temporal corre-
lations of quantization errors and measurement noises, we construct a second-order statistics equivalent system, from which
the original ARMA system is identified. The associated identifiability problem and convergence are analyzed as well. Finally,
numerical simulations are performed to demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

Quantized system identification is an important research
topic, which aims to identify system parameters from
quantized measurements rather than the exact measure-
ments. Due to its practical applications, we have wit-
nessed its tremendous development in the last decade.
For instance, transmitting the coarsely quantized data
in a networked system can improve the communication
efficiency (Wang et al. 2010) and storing quantized da-
ta reduces the memory size (Eldar & Kutyniok 2012).
While quantization is a severely nonlinear operator, it
imposes great challenges in system identification.

To date, many quantized identification algorithms have
been developed. They can be roughly by the studied sys-
tem models, e.g. gain system models (Wang & Yin 2007,
Li & Fang 2007), FIR models (Godoy et al. 2011, Guo
& Zhao 2013, Yu et al. 2013, You 2015, Guo et al. 2015),
IIR models (Marelli et al. 2013, Wang et al. 2006), time-
varying systems (Bermudez & Bershad 1996), and Ham-
merstein and Wiener models (Zhao et al. 2007, 2010).
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On the other hand, they can also be classified based
on the quantization setups, such as uniform or dithered
quantizer (Geirhofer et al. 2006,Widrow &Kollar 2008),
fixed-level quantizer (Godoy et al. 2011, Wimalajeewa
& Varshney 2012, Marelli et al. 2013), binary quantizer
(Krishnamurthy & Poor 1996, Wang et al. 2006, Zhao
et al. 2007, Guo & Zhao 2013, Vempaty et al. 2013), and
adaptive quantizer (Bolcskei & Hlawatsch 2001, Li &
Fang 2007, You 2015). Compared with the static quanti-
zation, the adaptive version is more complicated but po-
tentially more powerful, and may greatly reduce quan-
tization effects on the identification accuracy. Hence, it
has been intensively investigated in the literature.

In Fang & Li (2008), an adaptive quantized algorith-
m for distributed gain systems is proposed where the
quantizer thresholds are dynamically adjusted from one
sensor to another. This adjustment is conducted in the
spatial domain and the estimation algorithm asymptot-
ically approaches the Cramer-Rao lower bound (CRL-
B) as the number of sensors tends to infinity. Note that
the measurement noises of each sensor is assumed to
be spatially independent. In the time domain and un-
der the maximum likelihood (ML) criterion, recursive
quantized identification methods have been developed
for FIR (Godoy et al. 2011) and ARMA systems (Marelli
et al. 2013). Those recursive algorithms require to know
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the noise pdf in advance. To relax it, a recursive algo-
rithm of the stochastic approximation type has been de-
veloped in You (2015) by jointly designing the quantizer
and estimator. The adaptive quantizer uses the latest es-
timated parameters to tune its thresholds such that the
quantizer operates like quantizing innovations.

However, all the aforementioned works deal with color-
less noise models. There are only a fewworks to study the
colored measurement noises, e.g., Wang & Yin (2010),
Mei et al. (2014) where the noises are modeled as ϕ-
and ρ-mixing processes, respectively. Since colored nois-
es are common in practice, this is a meaningful problem.
Along the same line, this paper focuses on developing
a quantized recursive algorithm to identify the ARMA
system and the AR/ARMA noise model, where the noise
correlations will be exponentially decaying with respect
to the time difference. While mixing types of correlated
noises are broader than the colored case in this paper,
the identification algorithms in Wang & Yin (2010) and
Mei et al. (2014) are only applicable to periodic input
signals. This is a fundamental assumption as they use an
empirical-measure-based approach. Clearly, periodic in-
put signal will limit the applicability of their quantized
algorithms.

Inspired by You (2015), we jointly design the estimator
and the quantizer in a unified framework. Particularly,
the estimator provides the quantizer with the latest pa-
rameter estimate to adaptively adjusts its thresholds.
Such a strategy is motivated by the intuition that quan-
tizing “innovations” is expected to be efficient. In this
joint design scheme, the salient feature is that the esti-
mator can recursively compute estimate of system pa-
rameters with the quantized observations and system in-
puts. Obviously, the system model on the estimator side
has two correlated noise terms: one is the colored nois-
es from the original system model and the other is the
quantization errors, either of which makes it difficult to
correctly identify the system parameters. To solve it, our
idea is to construct an equivalent system with a hybrid
noise term which has the same second-order statistics as
the original system under quantized observations, and a
recursive estimation algorithm is developed to identify
the alternative system. It turns out that the alternative
one is a standard Box-Jenkins model, whose parameter-
s are estimated via the prediction-error method (Ljung
1999). Based on this notion of equivalence, the unknown
parameters of the original system can be estimated us-
ing quantized observations. Moreover, this process can
be implemented in a recursive way. Finally, the identifi-
ability of the concerned problem is investigated and the
convergence of the recursive algorithm is analyzed.

The rest of this paper is organized as follows. Section 2
formulates the quantized identification problem. Section
3 presents an identification method based on the joint
design of the quantizer and estimator. Section 4 provides
convergence analysis of the proposed identification al-
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Fig. 1. System diagram

gorithm. Section 5 extends the proposed method to the
Box-Jenkins system model. In Section 6, simulation re-
sults are given to illustrate the performance of the devel-
oped identification method, followed by the conclusion
in Section 7.

2 Problem Formulation

We consider a networked ARMA system in Fig. 1 with
measurement noises generated by an AR model:

y(t) =
B(q)

A(q)
u(t) +

1

D(q)
e(t),

z(t) = Qt[y(t)] ∈ R
(1)

where q denotes the forward shift operator. u(t) ∈ R
and y(t) ∈ R are the system input and output, re-
spectively. e(t) ∈ R is a white Gaussian process, e.g.,
e(t) ∼ N (0, σ2

e), z(t) ∈ R is the quantized observation.
Moreover, A(q), B(q) and D(q) are defined by

A(q) = 1 + a1q
−1 + . . .+ anaq

−na ,

B(q) = b0 + b1q
−1 + . . .+ bnb

q−nb ,

D(q) = 1 + d1q
−1 + . . .+ dnd

q−nd .

The time-varyingK-level scalar quantizerQt[·] is gener-
ically defined by

Qt[y(t)] =



vt,1 bt,0 < y(t) ≤ bt,1
vt,2 bt,1 < y(t) ≤ bt,2
...

vt,K bt,K−1 < y(t) ≤ bt,K

(2)

where {vt,k}Kk=1 are quantization levels, {bt,k}Kk=0 are
quantization thresholds with bt,0 = −∞ and bt,K = ∞.
The inverse of quantizer is defined by

Q−1
t [vt,i] = (bt,i−1, bt,i], i = 1, 2, . . . ,K.

In the sequel, the system in (1) is abbreviated to ARARX
model, and the following standard assumptions (Ljung
1999) are made.

A1: The input signal u(t), which can be either deter-
ministic or stochastic, is bounded and persistently
exciting;
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A2: B(q) and A(q) are coprime, and the transfer func-
tion B(q)/A(q) is stable;

A3: The transfer function of the noise term 1/D(q) is
stable.

In order to focus on the essence of quantizer design, the
orders of system in (1) are assumed to be known. Other-
wise, we can use a high-order ARXmodel for approxima-
tion, and subsequently reduce it to the structure of the
system in (1) by using the model reduction techniques
(Ljung 1999, Chapter 10).

Let Zt = {z(j)|j = 1, . . . , t} be a set consisting of t
quantized observations. Ut and Yt are sets of t precise
input and output samples, respectively. Collect the sys-
tem parameter vector by

θ = [a1, . . . , ana , b0, . . . , bnb
, d1, . . . , dnd

]T

with the superscript T denoting the vector transpose.
Let E be a mathematical expectation operator. Denote
ŷ(t|t − 1, θ) = E(y(t)|Yt−1, Ut−1, θ) the predictor (pre-

diction model) for the system output at time t. Let θ̂t
denote an estimate of θ based on t available samples and
θ∗ the true value of system parameters.

The problem of interest is to jointly design an adaptive
quantizer and a recursive estimator for the parameter
estimation of the ARARX model in (1).

3 Quantized identification of the ARARXmod-
el

In this section, the quantizer and estimator will be joint-
ly designed for identification task.

3.1 Adaptive quantization scheme

The quantized output is a discrete function which has
non-zero values only at finite points. Denote ϵ(t) = z(t)−
y(t) the quantization error. Then, the system in (1) can
be rewritten as

z(t) = y(t) + ϵ(t) =
B(q)

A(q)
u(t) +

1

D(q)
e(t) + ϵ(t). (3)

Clearly, the main difficulties in identifying the above sys-
tem are threefold: (a) the quantization noise ϵ(t) might
be a colored noise with unknown statistical properties;
(b) the noise e(t) and ϵ(t) are correlated; (c) A nontriv-
ial D(q) renders the existing quantized algorithms inap-
plicable. If D(q) = 1, it reduces to the model in Marelli
et al. (2013).

Obviously, the whiteness of ϵ(t) will substantially facil-
itate the design of the identification algorithm. To the

best of our knowledge, two types of quantizers are work-
able: (a) Uniform quantizer with an appropriate dither
(Widrow & Kollar 2008); (b) Predictive quantizer (Ger-
sho & Gray 1991, You 2015). The first approach is time-
invariant and easy to implement but at the expense of
infinite quantization levels. It does not make sense for
the moderate rate (say one or two-bit). In the simula-
tion, the identification performance of dither quantiza-
tion will be illustrated.

The second approach is time-varying which shifts along

with the prediction ŷ(t|t− 1, θ̂t−1) and yields the quan-
tized output

z(t) = Qt[y(t)]

= ŷ(t|t− 1, θ̂t−1) +Q[y(t)− ŷ(t|t− 1, θ̂t−1)],
(4)

where Q[·] is a finite-level Lloyd-Max quantizer (Max
1960). It is noteworthy that from the system diagram in
Fig. 1 the quantizer can directly access the exact system
outputs while the estimator cannot.

For the ARARX model in (1), the output prediction can
be explicitly written as:

ŷ(t|t− 1, θ̂t−1) =
B(q, θ̂t−1)D(q, θ̂t−1)

A(q, θ̂t−1)
u(t)

+ (1−D(q, θ̂t−1))y(t).

(5)

Suppose that θ̂t → θ∗ as t → ∞. By (4), we can write
the quantization error as follows:

ϵ(t) = z(t)− y(t)
= ŷ(t|t− 1, θ̂t−1)− y(t) +Q[y(t)− ŷ(t|t− 1, θ̂t−1)]

→Q[e(t)]− e(t). (6)

Under this case, the quantized error is indeed a white
noise as long as the estimated system parameters are
sufficiently close to their true values.

3.2 Recursive estimation method

In this subsection, we develop a quantized algorithm for
the estimator in Fig. 1. To achieve this goal, an equiv-
alent system having the same second-order statistics as
(3) is provided, based on which a recursive estimation al-
gorithm can be designed. To the best of our knowledge,
this idea has never been exploited in the literature on
quantized identification.

3.2.1 Second-order statistics equivalent model

The second term on the right-hand side of (3) is a col-
ored noise, which is also correlated with the quantiza-
tion error ϵ(t). Therefore, using traditional methods by
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ignoring the quantization error may not be able to ob-
tain unbiased estimates. To this end, we construct an
alternative model with the same second-order statistics
as that in (1):

z(t) =
B(q)

A(q)
u(t) +

C(q)

D(q)
η(t), (7)

where η(t) is a white noise with mean zero and variance
σ2
η, and C(q) = 1 + c1q

−1 + . . . + cncq
−nc satisfies the

following equation:

σ2
ηC(q)C(q

−1) =σ2
e + ρσeσϵD(q) + ρσeσϵD(q−1)

+ σ2
ϵD(q)D(q−1),

(8)

where the unknown correlation coefficient is conceptu-
ally given by

ρ =
cov(e(t), ϵ(t))

σeσϵ
(9)

and σ2
ϵ is the variance of the quantization error. Note

that the identification algorithm to be given later does
not require the known coefficient ρ. That is, it does not
cause any problem even we do not know ρ.

The above also implies that C(q)η(t) has the same spec-
trum as that of e(t) +D(q)ϵ(t). As the alternative sys-
tem in (7) is a standard Box-Jenkins model, its parame-
ters can be estimated using the prediction-error method
(Ljung 1999). Moreover, both models share the same
system parameters {A(q), B(q), D(q)}, and the second-
order statistics. This motivates to use the estimated pa-
rameters {A(q), B(q), D(q)} in (7) to the quantizer so
that it adaptively adjusts its thresholds. Specifically, we
use the quantized observation z(t) from (1) to identify
unknown parameters in (7) where we deliberately as-
sume that z(t) is generated from themodel in (7). The es-
timated parameters of {A(q), B(q), D(q)} are then used

to construct a predictor ŷ(t+ 1|t, θ̂t), based on which a
new quantized observation z(t+1) is produced by using
(4). Repeat the above process, the unknown parameters
in (1) are identified. The remaining problem is how to
identify (7) recursively by using z(t).

3.2.2 Recursive estimation algorithm

As shown in Fig. 1, the estimator has to be updated
once a new quantized sample is available. Hence, it is
necessary to develop a recursive identification algorithm.
We use ϑ to represent the parameter vector containing
the coefficients of A(q), B(q), C(q) and D(q). Note that
the parameter vector θ is contained in ϑ. The prediction-
error criterion for estimation can be written as

ϑ̂t = argmin
ϑ
Vt(Zt, ϑ),

Vt(Zt, ϑ) =
1

t

t∑
j=1

1

2
(z(j)− ẑ(j|j − 1, ϑ))

2
, (10)

where the predictor ẑ(t|t− 1, ϑ) is defined by

ẑ(t|t− 1, ϑ) =
D(q)B(q)

C(q)A(q)
u(t) +

(
1− D(q)

C(q)

)
z(t). (11)

A recursive algorithm to resolve the above optimization
problem is obtained as follows (Ljung 1999):

ϑ̂t = ϑ̂t−1 + µtR
−1(t, ϑ̂t−1)ψ(t, ϑ̂t−1)

× (z(t)− ẑ(t|t− 1, ϑ̂t−1))

:= ϑ̂t−1 + µtdt−1,

R(t, ϑ̂t−1) =
1

t

t∑
j=1

ψ(j, ϑ̂j−1)ψ
T (j, ϑ̂j−1)

(12)

where R(t, ϑ̂t−1) is an approximated Hessian matrix of
(10), µt is an appropriate stepsize, and ψ(t, ϑ) is the first-
order derivative of ẑ(t|t − 1, ϑ) with respect to ϑ. The
stepsize µt can be chosen by the backtracking line search
method (Boyd & Vandenberghe 2004). In particular, let
α = 0.01 and β = 0.1. Starting from an initial value
µt = 1, while

Vt(Zt, ϑ̂t−1 + µtdt−1)>Vt(Zt, ϑ̂t−1)

+αµtd
T
t−1 ·∆Vt(Zt, ϑ̂t−1) (13)

the stepsize is updated by using µt ← βµt. The gradient

of ∆Vt(Zt, ϑ̂t−1) is given by

∆Vt(Zt, ϑ̂t−1) = ψ(t, ϑ̂t−1)(z(t)− ẑ(t|t− 1, ϑ̂t−1)).

A nice property of the recursive algorithm is that it does
not require to know the coefficient in (9). In addition,
the derivative of ẑ(t|t− 1, ϑ) can be easily computed in
Lemma 1 below. It should be careful that the recursive
estimation in (12) has to start from an appropriate time
step due to the fact that the estimated Hessian matrix

R(t, ϑ̂t−1) with a small size of observation samples is
likely to be rank deficient. Overall, there is no difficulty
in implementing the algorithm.

Lemma 1 The first-order derivative of the predictor
ẑ(t|t− 1, ϑ) with respect to ϑ is computed by

ψ(t, ϑ) =
∂ẑ(t|t− 1, ϑ)

∂ϑ

=

[
−q−1Γna−1

( D(q)B(q)

A2(q)C(q)
u(t)

)
,Γnb

D(q)u(t)

A(q)C(q)
,

q−1Γnc−1
D(q) (A(q)z(t)−B(q)u(t))

A(q)C2(q)
,

q−1Γnd−1
B(q)u(t)−A(q)z(t)

A(q)C(q)

]T
,

where Γn =
[
1 q−1 . . . q−n

]T
.
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PROOF. It is straightforwardly derived based on the
definition of the first-order derivative of the prediction
function ẑ(t|t− 1, ϑ) with respect to ϑ, i.e,

ψ(t, ϑ) =

[
∂

∂a1
. . .

∂

∂ana

∂

∂b0
. . .

∂

∂bnb

∂

∂c1
. . .

∂

∂dnd

]T
× ẑ(t|t− 1, ϑ), where

∂ẑ(t|t− 1, ϑ)

∂ak
= −q−k

(
D(q)B(q)

A2(q)C(q)
u(t)

)
,

∂ẑ(t|t− 1, ϑ)

∂bk
= q−k D(q)u(t)

A(q)C(q)
,

∂ẑ(t|t− 1, ϑ)

∂ck
= q−kD(q) (A(q)z(t)−B(q)u(t))

A(q)C2(q)
,

∂ẑ(t|t− 1, ϑ)

∂dk
= q−kB(q)u(t)−A(q)z(t)

A(q)C(q)
.

This can easily complete the proof.

Let DM be a compact region containing the true param-
eter vector ϑ∗ and the prediction model (11) be stable

for all ϑ̂N ∈ DM. To improve convergence, the updat-
ed estimator is further projected back to the region DM
per iteration, i.e., ϑ̂t = ΠDM(ϑ̂t) where ΠDM(·) is a Eu-

clidean projector, and ϑ̂t in the right hand side is com-
puted from (12) with a slight abuse of notation. Note
that the existence of such a compact region DM is com-
mon in the literature (Ljung 1999), and can be obtained
by inspecting the specific identification task.

3.3 Summary of the identification algorithm

In summary, the quantized identification algorithm is
given in Algorithm 1.

Algorithm 1 (a) Give any initial conditions θ̂0 and

ϑ̂0. Set t = 1.
(b) Generate the quantized observation z(t) by (4)-(5).

(c) Update ϑ̂t as in (12) by using z(t).

(d) Update θ̂t by extracting the estimated coefficients of

A(q), B(q) and D(q) from ϑ̂t.
(e) t← t+ 1 and go to (b).

Remark 1 Strictly speaking, the alternative system in
(7) cannot completely characterize (3). The main differ-
ence lies in the fact that C(q)η(t) may not be adequate
to capture the possible temporal correlations of the quan-
tization noise ϵ(t). If the estimate is far from the true
parameter vector θ∗, it is conceivably impossible to cor-
rectly obtain the statistics of ϵ(t). However, if the esti-
mate is close to the true parameter vector θ∗, it follows
from (6) that the quantization noise ϵ(t) becomes a white
noise. Then, both the alternative model (7) and the orig-
inal model (3) are statistically equivalent. This implies

that the above identification algorithm is also accurate for
model (3). From this perspective, the quantized algorith-
m is an approximate version of the original model (3).
Nonetheless, we perform quite a few simulations, and
the results suggest that the identification algorithm with
quantized observations always works well for the system
(3) once the system (7) is identifiable. To this end, we
shall study the identifiability of the system in (7) in the
next section.

4 Identifiability and convergence analysis

The new idea for dealing with colored noises depends
heavily on the alternative model (7). Thus, it is essential
to examine its identifiability under quantized observa-
tions, which is shown in the following lemma.

Lemma 2 Suppose that Assumptions A2-A3 hold and
that C(q) and D(q) satisfy (8). Then, the alternative
system model in (7) is always identifiable.

PROOF. ByAssumption A2, it is clear thatB(q)/A(q)
is irreducible. From the spectrum equivalency equation
(8), C(q) and D(q) have no common zeros. In addition,
the orders of A(q), B(q), C(q) and D(q) are known ex-
actly. By Theorem 4.1 of Ljung (1999), we conclude that
the system in (7) is identifiable.

Clearly, the optimization problem in (10) with respect
to the parameter vector ϑ is non-convex (Verhaegen &
Verdult 2007). Thus, the developed recursive estimator
can only converge to a local optimal solution. However,
the global optimal solution of the quantized identifica-
tion problem has the following properties.

Proposition 3 Under Assumptions A1-A3 and

P = lim
t→∞

1

t

t∑
j=1

E
[
ψ(j, ϑ∗)ψT (j, ϑ∗)

]
.

Consider the alternative system model in (7). If ϑ̂t is an
optimizer of (10), it holds that

(a) ϑ̂t → ϑ∗ as t→∞ with probability one.

(b)
√
t · (ϑ̂t − ϑ∗)

in dist.−−−−→ N (0, σ2
η · P−1) as t → ∞,

where
in dist.−−−−→means the convergence in distribution

and ση is the variance of η(t) in (8).

PROOF. It can be straightforwardly obtained by fol-
lowing Theorem 9.1 of Ljung (1999), and the details are
omitted.
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By Proposition 3, the CRLB for the estimation of ϑ is
σ2
ηP

−1. As ψ(t, ϑ∗) is expressed in terms of z(t), P−1 is a

matrix having complicated relations with σ2
η. Therefore,

it is difficult to explicitly show the dependence of the
CRLB on σ2

η.

Next, we show the quantization effects on the value of σ2
η.

Suppose that Q[·] is a fixed-level Lloyd-Max quantizer
(Max 1960). Let ζ(t) = Q[e(t)] and ϵ(t) = ζ(t) − e(t).
Then, it has the following properties:

E (ζ(t)ϵ(t)) = 0,

E
(
e2(t)

)
= E

(
ζ2(t)

)
+ E

(
ϵ2(t)

)
,

cov (e(t), ϵ(t)) = −E
(
ϵ2(t)

)
.

Inserting cov (e(t), ϵ(t)) into (8) yields σ2
ηC(q)C(q

−1) =

σ2
e −σ2

ϵD(q)−σ2
ϵD(q−1)+σ2

ϵD(q)D(q−1). This implies
that

σ2
η =

σ2
e − (2− ∥d∥2)σ2

ϵ

∥c∥2
, (14)

where c = [1, c1, . . . , cnc ]
′ and c = [1, d1, . . . , dnd

]′.

By (14), it is clear that when ∥d∥2 > 2, the value of σ2
η

increases along with with σ2
ϵ . It implies that σ2

η will be
larger when the number of quantization levels becomes
fewer. If ∥d∥2 < 2, the value of σ2

η will be smaller as
the number of quantization levels becomes fewer. This
is an interesting phenomenon since it suggests that the
measurement noise in the alternative model might not
be proportional to the number of quantization levels.

As shown in (4), the quantizer plays two roles: one is to

compute the predicted output ŷ(t|t − 1, θ̂t−1), and the
other is to send the estimator the quantized observation.
In practice, the quantizer can access the exact system
output y(t), it is reasonable to assume that quantizer
has the knowledge of the exact predictor as shown in (5).

As shown in equations (4) and (6), when θ̂t → θ∗, it has
that

z(t) = ŷ(t|t− 1, θ̂t−1) +Q
[
y(t)− ŷ(t|t− 1, θ̂t−1)

]
→ ŷ(t|t− 1, θ∗)− e(t) +Q[e(t)].

(15)

In the above, since e(t) is a white noise, the quantization
error Q[e(t)] − e(t) is generically a white noise (Godoy
et al. 2011). When −e(t) +Q[e(t)] is a white noise and
under Assumptions A1-A3, it can be verified that the
true parameter vector θ∗ is indeed the unique solution
for the identification of (15) or (1). The developed iden-
tification algorithm summarized in Subsection 3.3 pro-
vides a recursive estimation approach for the integrated
model (15). At time step t, substituting the expression-
s of z(t) in (4) and ẑ(t|t − 1, ϑ) in (11), the parameter

update in (12) can be rewritten as

ϑ̂t = ϑ̂t−1 + µtΨ(t, ϑ̂t−1)

(
D(q, ϑ̂t−1)

C(q, ϑ̂t−1)
ŷ(t|t− 1, ϑ̂t−1)

+
D(q, ϑ̂t−1)

C(q, ϑ̂t−1)
Q[y(t)− ŷ(t|t− 1, ϑ̂r−1)]

−D(q, ϑ̂t−1)B(q, ϑ̂t−1)

C(q, ϑ̂t−1)A(q, ϑ̂t−1)
u(t)

)
, (16)

where Ψ(t, ϑ̂t−1) = R−1(t, ϑ̂t−1)ψ(t, ϑ̂t−1). Suppose
that D(q) = 1. It follows from (8) that C(q) = 1. Then,
(16) can be simplified as

ϑ̂t = ϑ̂t−1+µtΨ(t, ϑ̂t−1)Q[y(t)− ŷ(t|t−1, ϑ̂t−1)], (17)

where Ψ(t, ϑ̂t−1) depends on Ut−1 rather than Zt−1 or
Yt−1. It is remarked that the above parameter update
performs like a quantized LMS algorithm (Bermudez
& Bershad 1996) or a recursive estimator of stochas-
tic approximation type (You 2015). Thus, the recursive
algorithm in this paper can be adapted for identifying
the FIR model in You (2015) and the ARMA model in
Marelli et al. (2013).

5 Identification of the Box-Jenkins model

The striking feature of the proposed algorithm is that
we can easily generalize it to identify the Box-Jenkins
model using quantized observations

y(t) =
B(q)

A(q)
u(t) +

F (q)

D(q)
e(t)

z(t) = Qt[y(t)].

(18)

Under the predictive quantization scheme and denoting
the quantization error as ϵ(t) = z(t)− y(t), we obtain

z(t) =
B(q)

A(q)
u(t) +

F (q)

D(q)
e(t) + ϵ(t). (19)

The equivalent system model having the same second-
order statistics is written as

z(t) =
B(q)

A(q)
u(t) +

C(q)

D(q)
η(t) (20)

where η(t) is a white noise and

C(q) = 1 + c1q
−1 + . . .+ cncq

−nc

satisfies the following equation

σ2
ηC(q)C(q

−1) = σ2
eF (q)F (q

−1) + ρσeσϵF (q)D(q−1)

+ρσeσϵF (q
−1)D(q) + σ2

ϵD(q)D(q−1) (21)
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with ρ being defined in (9).

Let ϕt be the parameter vector of the Box-Jenkins model
at time t. The associated output prediction is

ŷ(t+ 1|t, ϕt) =
D(q, ϕt)B(q, ϕt)

F (q, ϕt)A(q, ϕt)
u(t+ 1)

+
F (q, ϕt)−D(q, ϕt)

F (q, ϕt)
y(t+ 1),

and the quantized observation is generated by

z(t+ 1) = ŷ(t+ 1|t, ϕt) +Q[y(t+ 1)− ŷ(t+ 1|t, ϕt)].

For the ARARX system, only A(q), B(q) and D(q) are
to be estimated. However, for the Box-Jenkins model,
we have to compute F (q) using the spectrum equiva-
lency equation in (21) and send to the quantizer. The
following lemma gives a sufficient condition for the u-
nique solution of F (q).

Lemma 4 Suppose that A(q), B(q), C(q) and D(q) in
(20) are available. Let σ2

e , σ
2
ϵ and cov (e(t)ϵ(t)) be known

as a priori knowledge. Then F (q) can be uniquely deter-
mined if σeF (q)+ρσϵD(q) is a minimum-phase function,
i.e. the amplitudes of its roots are less than one.

PROOF. Equation (21) can be recast as

σ2
ηC(q)C(q

−1) = [σeF (q) + ρσϵD(q)][σeF (q
−1) (22)

+ρσϵD(q−1)] + (1− ρ2)σ2
ϵD(q)D(q−1).

In addition, the variance of η(t) can be unbiasedly esti-
mated by Ljung (1999, Lemma II.1):

σ̂2
η =

1

t− nϕ

t∑
j=1

(
z(j)− ẑ(j|j − 1, ϕ̂j−1)

)2
(23)

where nϕ is the dimension of the parameter vector ϕ.
After identifying the system model in (20), the value of

σ2
ηC(q)C(q

−1)− (1− ρ2)σ2
ϵD(q)D(q−1)

in (22) can be computed off-line. Since σeF (q)+ρσϵD(q)
is minimum-phase, it can be uniquely obtained by min-
imum and maximum-phase factorization. As a result,
F (q) is determined.

Remark 2 For the Box-Jenkins model, the joint-design
of the adaptive quantizer and recursive estimator can
be obtained as in the previous section. Assume that
F (q)/D(q) is irreducible and minimum phase. By Lem-
ma 4, the alternative system model (20) is identifiable.

Different from the identification of the ARARX model,
the knowledge of σ2

e , σ
2
ϵ and cov (e(t)ϵ(t)) here should

be known in advance. For the system model in (18), if
we set the system input to u(t) = 0 for all times, then it
becomes a blind system identification problem. Thus, the
proposed identification algorithm can solve the quantized
blind identification problem with the input being a white
noise.

6 Numerical simulation

In this section, simulation examples are provided to il-
lustrate the effectiveness of the quantized identification
algorithm. The identification performance under differ-
ent quantization schemes will be illustrated.

The input signal u(t) is generated by a truncated stan-
dard white Gaussian noise in the interval [−3, 3]. The
noise e(t) is generated as a standard white Gaussian
noise, which is uncorrelated with the input signal u(t).
In this section, the recursive estimation starts from the
151st sample. To obtain its initial point, we collect the
first 150 quantized samples by a zero-mean static Lloyd-
Max quantizer, and calculate the minimizer of the pre-
diction error criterion in (10).

The numerical simulations are based on the following
ARARX model and the Box-Jenkins model

y(t) =
b0 + b1q

−1

1 + a1q−1 + a2q−2
u(t) +

1

1 + d1q−1 + d2q−2
e(t)

y(t) =
b0 + b1q

−1

1 + a1q−1 + a2q−2
u(t) +

1 + f1q
−1 + f2q

−2

1 + d1q−1 + d2q−2
e(t).

(24)

The associated true system parameters are given in
Table 1 which are identifiable by applying a two-bit
Lloyd-Max quantizer. Implementing a two-bit Lloyd-
Max quantizer, the values of σ2

ϵ and cov(e(t)ϵ(t)) can
be computed off-line.

Table 1
Coefficients of the ARARXmodel and the Box-Jenkins mod-
el

a1 a2 b0 b1

-0.2000 0.4421 0.7000 0.3000

f1 f2 d1 d2

0.2014 -0.2707 -0.4040 0.5649

The mean square error (MSE) criterion is adopted to
evaluate the identification performance:

MSEt =
1

T

T∑
i=1

∥θ̂(i)t − θ∗∥22, (25)
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where t is the time step, T denotes the number of Monte-

Carlo runs, and θ̂
(i)
t is the i-th estimate of the system

parameters at the time step t.

In Fig. 2, the estimated parameters of the ARARXmod-
el and the Box-Jenkins model are plotted at differen-
t time steps by one Monte-Carlo trial. It can be ob-
served that the estimated parameters fluctuate around
their true values and the deviations become smaller as
the number of quantized samples increases. Fig. 3 shows
the estimate of the parameters by averaging 300 Monte-
Carlo trials at each time step. The averaged estimates
are close to their true values when the time index is large,
which provides an experimental validation that the pro-
posed identification works well under a two-bit Lloyd-
Max quantizer. In addition, we observe that the MSE
curve of the Box-Jenkins model decays slower than that
of the ARARX model. This is mainly caused by the esti-
mation of F (q). Since the estimation of F (q) is based on
the estimated C(q) and D(q), the associated estimation
error of F (q) may be propagated and intensified from
those of C(q) and D(q).
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Fig. 2. Top: one sample trial of the ARARX model identifi-
cation; bottom: one sample trial of the Box-Jenkins model
identification.

Next, we examine the identification performance of dif-
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Fig. 3. Top: averaged identification result of the ARARX
model; middle: averaged identification result of the Box–
Jenkins model; bottom: MSE curves.

ferent quantization schemes based on the ARARXmodel
in (24). Two alternative quantization schemes are adopt-
ed: a uniform quantizer with unit quantization interval
and a two-bit static Lloyd-Max quantizer, and they all
use the same identification algorithm which is develope-
d in this paper. From Fig. 4, one can find that both the
uniform quantizer and the adaptive quantizer can result
in accurate estimates. For the uniform quantizer, it can
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be considered as a dithered quantizer since there already
exists a white noise before quantization. However, the
static Lloyd-Max quantizer leads to a biased estimation,
which is caused by the fact that the quantization errors
are temporally correlated. Moreover, Fig. 5 shows the
identification performance of the adaptive Lloyd-Max
quantizers with different numbers of quantization levels,
where the convergence speed of the proposed identifica-
tion algorithm is much faster when more quantization
levels are involved. It is noteworthy that the MSE can
better reflect the performance of the proposed identifi-
cation algorithm. The MSE values at the first few iter-
ations may not be reliable, which are caused by follow-
ing facts: (a) the initial conditions are randomly chosen;
(b) the sequences of step sizes for different sample trials
are distinct; (c) the associated recursive algorithm may
not produce satisfactory results under a small number
observation samples.
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Fig. 4. MSE associated with the adaptive Lloyd-Max quan-
tizer, static Lloyd-Max quantizer and uniform quantizer.
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Fig. 5. MSE associated with the Lloyd-Max quantizers with
different numbers of quantization levels.

7 Conclusion

In this paper, we have dealt with the quantized identi-
fication problems of the ARARX model and the Box-
Jenkins model via jointly designing the quantizer and

estimator. The designed quantizer adaptively adjusts its
quantization thresholds according to the latest estimate
of the system parameters, which aims to provide the es-
timator the “innovation” of outputs. For the estimator,
it recursively estimates the system parameters based on
the quantized observations. Since the received observa-
tions at the estimator are contaminated by the quanti-
zation error and colored measurement noise, a second-
order statistics equivalent system model was construct-
ed and identified. Simulation results show that the pro-
posed method works well, even under one-bit quantized
observations.

The connections between the existing adaptive quan-
tized identification algorithms and the presented ap-
proach are discussed. It shows that the presented algo-
rithm is a generalized version of quantized LMS algorith-
m or the recursive estimation of the stochastic approxi-
mation type. Thus, the presented algorithm can be ap-
plied for the identification of ARMA systems with white
measurement noises. Moreover, when the concerned sys-
tem model does not have the term involving the deter-
ministic system input but the colored noise term, the as-
sociated quantized identification becomes a blind iden-
tification problem under quantized observations, which
will be further investigated in our future work.
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